How do you prove the identity #sec u - tan u = cos u/(1+sin u)# ?

1 Answer
Feb 22, 2017

See explanation...

Explanation:

Use:

#sec u = 1/cos u#

#tan u = sin u/cos u#

#cos^2 u + sin^2 u = 1#

Then:

#sec u - tan u = 1/cos u - sin u/cos u#

#color(white)(sec u - tan u) = (1-sin u)/cos u#

#color(white)(sec u - tan u) = (1-sin u)/cos u*(1+sin u)/(1+sin u)#

#color(white)(sec u - tan u) = (1-sin^2 u)/(cos u(1+sin u))#

#color(white)(sec u - tan u) = cos^2 u/(cos u(1+sin u))#

#color(white)(sec u - tan u) = cos u/(1+sin u)#