How do you find the derivative of #y=e^x(sinx+cosx)#?
1 Answer
Feb 25, 2017
Explanation:
differentiate using the
#color(blue)"product rule"#
#"Given "y=g(x).h(x)" then"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(dy/dx=g(x)h'(x)+h(x)g'(x))color(white)(2/2)|)))#
#"here "g(x)=e^xrArrg'(x)=e^x#
#"and "h(x)=sinx+cosxrArrg'(x)=cosx-sinx#
#rArrdy/dx=e^x(cosx-sinx)+e^x(sinx+cosx)#
#color(white)(xxxxx)=e^xcosxcancel(-e^xsinx)cancel(e^xsinx)+e^xcosx#
#color(white)(xxxxx)=2e^xcosx#