How do you find the length of the curve #y=sqrt(x-x^2)+arcsin(sqrt(x))#?
1 Answer
Explanation:
The arc length of a continuous curve from
#y' = (1 - 2x)/(2sqrt(x - x^2)) + 1/(2sqrt(x - x^2)#
#y' = (1 - 2x + 1)/(2sqrt(x- x^2))#
#y' = (2 - 2x)/(2sqrt(x - x^2)#
#y' = (2(1 - x))/(2sqrt(x - x^2)#
#y' = (1 - x)/sqrt(x(1 - x))#
Now let's find the endpoints of the function
The second part of the function,
#A = int_0^1 sqrt(1 + ((1 - x)/sqrt(x(1 - x)))^2)dx#
#A = int_0^1 sqrt(1 + (1 - x)^2/(x(1 - x)))dx#
#A = int_0^1 sqrt(1 + (1 - x)/x) dx#
#A = int_0^1 sqrt(1 + 1/x - x/x)dx#
#A = int_0^1 sqrt(1 + 1/x - 1)dx#
#A = int_0^1 sqrt(x^-1)#
#A = int_0^1 (x^-1)^(1/2)#
#A = int_0^1 x^(-1/2)#
#A = [2x^(1/2)]_0^1#
#A = 2(1)^(1/2) - 2(0)^(1/2)#
#A = 2#
Hopefully this helps!