How do you find #dy/dx# by implicit differentiation given #x/y+3y=2#?
1 Answer
Feb 28, 2017
Explanation:
#x/y+3y=2#
#rArrx/y=2-3y# differentiate all terms on both sides
#color(blue)"implicitly with respect to x"#
#"differentiate "x/y" using the " color(blue)"quotient rule"#
#rArr(y.1-x.dy/dx)/(y^2)=0-3.dy/dx#
#rArry-xdy/dx=-3y^2dy/dx#
#rArrdy/dx(3y^2-x)=-y#
#rArrdy/dx=-y/(3y^2-x)#