How do you solve and find the value of #sin(cos^-1(3/4))#? Trigonometry Inverse Trigonometric Functions Inverse Trigonometric Properties 1 Answer Ratnaker Mehta Mar 2, 2017 #sqrt7/4.# Explanation: Let, #cos^-1(3/4)=theta.# Knowing that, #cos^-1 x=theta iff x=costheta, theta in [0,pi],# we get, #costheta=3/4, and, 0 le theta le pi.# But #costheta >0 rArr theta !in [pi/2,pi] rArr 0 le theta le pi/2.# #:. sintheta=+-sqrt(1-cos^2theta)=+-sqrt(1-9/16)=+-(sqrt7)/4.# #0 le theta le pi/2 rArr sin theta gt 0 rArr sin theta=+sqrt7/4.# #:. sin (cos^-1(3/4))=sintheta=sqrt7/4.# Enjoy Maths.! Answer link Related questions How do you use the properties of inverse trigonometric functions to evaluate #tan(arcsin (0.31))#? What is #\sin ( sin^{-1} frac{sqrt{2}}{2})#? How do you find the exact value of #\cos(tan^{-1}sqrt{3})#? How do you evaluate #\sec^{-1} \sqrt{2} #? How do you find #cos( cot^{-1} sqrt{3} )# without a calculator? How do you rewrite #sec^2 (tan^{-1} x)# in terms of x? How do you use the inverse trigonometric properties to rewrite expressions in terms of x? How do you calculate #sin^-1(0.1)#? How do you solve the inverse trig function #cos^-1 (-sqrt2/2)#? How do you solve the inverse trig function #sin(sin^-1 (1/3))#? See all questions in Inverse Trigonometric Properties Impact of this question 11038 views around the world You can reuse this answer Creative Commons License