How do you normalize (- 3 i + 12j -5k)(3i+12j5k)?

1 Answer
Mar 5, 2017

u=<-3/sqrt(178),12/sqrt(178),-5/sqrt(178)>u=<3178,12178,5178>

Explanation:

In normalizing the vector we are finding a unit vector (magnitude/length of one) in the same direction as the given vector. This can be accomplished by dividing the given vector by its magnitude.

u=v/(|v|)u=v|v|

Given v=<-3,12,-5>v=<3,12,5>, we can calculate the magnitude of the vector:

|v|=sqrt((v_x)^2+(v_y)^2+(v_z)^2)|v|=(vx)2+(vy)2+(vz)2

|v|=sqrt((-3)^2+(12)^2+(-5)^2)|v|=(3)2+(12)2+(5)2

|v|=sqrt(9+144+25)|v|=9+144+25

|v|=sqrt(178)|v|=178

We now have:

u=(<-3,12,-5>)/sqrt(178)u=<3,12,5>178

=>u=<-3/sqrt(178),12/sqrt(178),-5/sqrt(178)>u=<3178,12178,5178>

Hope that helps!