How do you use the Maclaurin series for sin(8x^2) to evaluate the integral a = 0 b = 0.65?

1 Answer
Mar 7, 2017

#int_0^0.65 sin(8x^2) dx ~~ 0.3136#

Explanation:

#sin(t) = sum_(n=0)^oo (-1)^n/((2n+1)!) t^(2n+1)#

Put #t = 8x^2# to get:

#sin(8x^2) = sum_(n=0)^oo ((-1)^n8^(2n+1))/((2n+1)!) x^(4n+2)#

Then:

#int_0^c sin(8x^2) dx = int_0^c sum_(n=0)^oo ((-1)^n8^(2n+1))/((2n+1)!) x^(4n+2) dx#

#color(white)(int_0^c sin(8x^2) dx) = [ sum_(n=0)^oo ((-1)^n8^(2n+1))/((4n+3)(2n+1)!) x^(4n+3) ]_0^c#

#color(white)(int_0^c sin(8x^2) dx) = sum_(n=0)^oo ((-1)^n8^(2n+1))/((4n+3)(2n+1)!) c^(4n+3)#

#color(white)(int_0^c sin(8x^2) dx) = 8/3 c^3 - 256/21 c^7 + 4096/165 c^11 - 131072/4725 c^15 + 1048576/53865 c^19 - 33554432/3586275 c^23 + O(c^25)#

Evaluated for #c = 0.65# gives us #0.31359 + O(c^25)#

A better approximation for the integral is #0.313618#.