How do you differentiate #f(x)=xsinx+cosx#?
1 Answer
Mar 9, 2017
Explanation:
#color(orange)"Reminder"#
#• d/dx(sinx)=cosx" and " d/dx(cosx)=-sinx#
#"to differentiate "xsinx" use the "color(blue)"product rule"#
#"Given "f(x)=g(x)h(x)" then"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(f'(x)=g(x)h'(x)+h(x)g'(x))color(white)(2/2)|)))larr" product rule"#
#"here "g(x)=xrArrg'(x)=1#
#"and "h(x)=sinxrArrh'(x)=cosx#
#rArrf'(x)=xcosx+sinxlarr" derivative of "xsinx# Differentiating the original f(x)
#f(x)=xsinx+cosx#
#rArrf'(x)=xcosx+sinx-sinx#
#rArrf'(x)=xcosx#