Show that the derivative of #(sinx)/(1 - cosx)# is #-cscx#?
2 Answers
and not
Explanation:
=
=
=
=
=
As such
=
=
=
We can't, because it's false...
Let's use the product rule.
#d/(dx)[(sinx)/(1-cosx)]#
#= sinx * -1/(1-cosx)^2 * -(-sinx) + 1/(1-cosx) * cosx#
#= -(sin^2x)/(1-cosx)^2 + cosx/(1-cosx)#
#= -(sin^2x)/(1-cosx)^2 + (cosx(1-cosx))/(1-cosx)^2#
#= -(sin^2x)/(1-cosx)^2 + (cosx - cos^2x)/(1-cosx)^2#
#= (cosx - cos^2x - sin^2x)/(1-cosx)^2#
#= (cosx - (cos^2x + sin^2x))/(1-cosx)^2#
#= (cosx - 1)/(1-cosx)^2#
#= -cancel(1 - cosx)/(1-cosx)^cancel(2)#
#= -1/(1-cosx)#
But we know that
#-1/(1-cosx) = -1/sinx#
Therefore:
#sinx/(1-cosx) = 1#
#sinx = 1 - cosx#
#sinx + cosx ne 1#
Clearly, we have found that this identity is false. More definitively, we can plot this equation to get:
#sinx + cosx# :
graph{sinx + cosx [-10, 10, -5, 5]}
As this equation is not a straight horizontal line, it cannot be equal to