Question #a927e

2 Answers

We know

cos2theta=cos^2theta-sin^2thetacos2θ=cos2θsin2θ

cos2theta=cos^2theta-(1-cos^2theta)cos2θ=cos2θ(1cos2θ)

cos2theta=2cos^2theta-1cos2θ=2cos2θ1

cos^2theta=1/2*(1+cos2theta)cos2θ=12(1+cos2θ)

costheta=sqrt(1/2(1+cos2*theta))cosθ=12(1+cos2θ)

putting theta=22.5θ=22.5 we get

cos(22.5)=sqrt(1/2(1+cos45^o)cos(22.5)=12(1+cos45o)

cos(22.5)=sqrt(1/2(1+1/sqrt2)cos(22.5)=12(1+12)

Mar 12, 2017

sqrt(2 + sqrt2)/22+22

Explanation:

Call cos (22.5) = cos t
cos 2t = cos (45) = sqrt2/2cos2t=cos(45)=22
Use trig identity:
2cos^2 t = 1 + cos 2t = 1 + sqrt2/2 = (2 + sqrt2)/22cos2t=1+cos2t=1+22=2+22
cos^2 t = (2 + sqrt2)/4cos2t=2+24
cos t = +- sqrt(2 + sqrt2)/2cost=±2+22
Since cos 22.5 is positive, then, take the positive answer.
cos (22.5) = cos t = sqrt(2 +sqrt2)/2cos(22.5)=cost=2+22