How to find the limit 5(1-cos2x)/sin2x as x approach 0 from the left ?

2 Answers
Mar 18, 2017

#lim_(x->0^-) (5(1-cos2x))/(sin2x) = 0#

Explanation:

To evaluate:

#lim_(x->0^-) (5(1-cos2x))/(sin2x)#

we can divide numerator and denominator by #2x# and then substitute #t= 2x#:

#lim_(x->0^-) (5(1-cos2x))/(sin2x) = 5 lim_(x->0^-) ((1-cos2x)/(2x))/((sin2x)/(2x)) = 5 lim_(t->0^-) ((1-cost)/t)/((sint)/t)#

Now consider the well known limits:

#lim_(x->0) sinx/x = 1#

#lim_(x->0) (1-cosx)/x = 0#

and we have:

#lim_(x->0^-) (5(1-cos2x))/(sin2x) = (5*0)/1 = 0#

graph{(5(1-cos(2x)))/sin(2x) [-10, 10, -5, 5]}

Mar 18, 2017

#0.#

Explanation:

We have, #1-cos2x=2sin^2x, and, sin2x=2sinxcosx.#

#:." The Reqd. Limit="lim_(x to 0){5(2sin^2x)}/{2sinxcosx}#

#=5{lim_(x to 0) tanx}#

#=5(tan0)#

#=0.#

Since the Limit exists, we have,

#lim_(xto0-){5(1-cos2x)}/(sin2x)=0=lim_(xto0+){5(1-cos2x)}/(sin2x)," too."#

Enjoy Maths.!