How do you find the derivative of # F(x)=x^3−7x+5# using the limit definition?
1 Answer
Mar 27, 2017
Explanation:
differentiating using the
#color(blue)"limit definition"#
#f'(x)=lim_(hto0)(f(x+h)-f(x))/h# The aim here is to obtain a factor h on the numerator which will cancel the h on the denominator.
#f'(x)=lim_(hto0)((x+h)^3-7(x+h)+5-(x^3-7x+5))/h#
#lim_(hto0)(cancel(x^3)+3x^2h+3xh^2+h^3cancel(-7x)-7hcancel(+5)cancel(-x^3)cancel(+7x)cancel(-5))/h#
#=lim_(hto0)(cancel(h)(3x^2+3xh+h^2-7))/cancel(h)#
The terms with an h on the numerator
#rArrf'(x)=3x^2-7#