Solve the equation #cos^2x+cos^2(3x)=1#?

2 Answers

#x=(kpi+-pi/4)uu((kpi)/2+-pi/8)# where #k# is an integer.

Explanation:

#cos^2(3x)=1-cos^2x=sin^2x# so

#(cos(3x)+sin(x))(cos(3x)-sin(x))=0#

or

1) #cos(3x)=-sin(x)=sin(-x)=cos(pi/2-(-x))#

then

#3x=2kpi+-(pi/2+x)#

i.e. either #2x=2kpi+pi/2# and #x=kpi+pi/4#

or #4x=2kpi-pi/2# and #x=(kpi)/2-pi/8#

2) #cos(3x)-sin(x)=0#

or

#cos(3x) = sin(x)=cos(pi/2-x)#

so

#3x=2kpi+-(pi/2-x)#

i.e. either #4x=2kpi+pi/2# and #x=(kpi)/2+pi/8#

or #2x=2kpi-pi/2# and #x=kpi-pi/4#

so the solutions are

#x=(kpi+-pi/4)uu((kpi)/2+-pi/8)# where #k# is an integer.

Mar 28, 2017

#{x:x={:(pi/4+npi),(("-"pi)/8+(npi)/2),(pi/8+(npi)/2),(("-"pi)/4+npi):},ninZZ}# or equivalently #{x:x=(npi)/8,n!=4m,ninZZ,m inZZ}#

Explanation:

#cos^2x+cos^2(3x)=1#

Subtract #cos^2x# from both sides
#cos^2(3x)=1-cos^2x#

Using the Pythagorean Identity #sin^2theta+cos^2theta=1#,
#1-cos^2x=sin^2x#, therefore
#cos^2(3x)=sin^2x#

Subtract #sin^2x# from both sides
#cos^2(3x)-sin^2x=0#

Factor the left side using the difference of squares
#(cos(3x)+sinx)(cos(3x)-sinx)=0#

Time to find the value of #x#

Case 1: #cos(3x)+sinx=0#

Subtract #sinx# from both sides
#cos(3x)="-"sinx#

Since #"-"sintheta=sin("-"theta)#,
#"-"sinx=sin("-"x)#, therefore
#cos(3x)=sin("-"x)#

Since #sintheta=cos(pi/2-theta)# and #cos(theta)=cos(theta+2npi),ninZZ#,
#sin("-"x)=cos(pi/2+x+2npi)#, therefore
#cos(3x)=cos(pi/2+x+2npi)#

Since #costheta=cos("-"theta)#,
#3x=pi/2+x+2npi or 3x=("-"pi)/2-x-2npi#

Case 1.1: #3x=pi/2+x+2npi#

Subtract #x# from both sides
#2x=pi/2+2npi#

Divide both sides by #2#
#color(blue)(x=pi/4+npi,ninZZ)#

Case 1.2: #3x=("-"pi)/2-x-2npi#

Add #x# to both sides
#4x=("-"pi)/2-2npi#

Divide both sides by #4#
#color(blue)(x=("-"pi)/8-(npi)/2,ninZZ)#

Case 2: #cos(3x)-sinx=0#

Add #sinx# to both sides
#cos(3x)=sinx#

Since #sintheta=cos(pi/2-theta)# and #cos(theta)=cos(theta+2npi),ninZZ#,
#sinx=cos(pi/2-x+2npi)#, therefore
#cos(3x)=cos(pi/2-x+2npi)#

Since #costheta=cos("-"theta)#,
#3x=pi/2-x+2npi or 3x=("-"pi)/2+x-2npi#

Case 2.1: #3x=pi/2-x+2npi#

Add #x# to both sides
#4x=pi/2+2npi#

Divide both sides by #4#
#color(blue)(x=pi/8+(npi)/2,ninZZ)#

Case 2.2: #3x=("-"pi)/2+x-2npi#

Subtract #x# from both sides
#2x=("-"pi)/2-2npi#

Divide both sides by #2#
#color(blue)(x=("-"pi)/4-npi,ninZZ)#

Since #n# can be any integer, any term with #"-"n# can be replaced with #n#, so compiling everything gives
#color(red)({x:x={:(pi/4+npi),(("-"pi)/8+(npi)/2),(pi/8+(npi)/2),(("-"pi)/4+npi):},ninZZ})# or equivalently #color(red)({x:x=(npi)/8,n!=4m,ninZZ,m inZZ})#