If #sintheta=1/3# and #theta# is in quadrant I, how do you evaluate #tan2theta#?
1 Answer
Explanation:
Use the equation
The given information tells us that
The formula for
From
#sin^2theta+cos^2theta=1#
Using
#1/9+cos^2theta=1#
#costheta=sqrt(8/9)=(2sqrt2)/3#
So now we can figure out
#tantheta=sintheta/costheta=(1/3)/((2sqrt2)/3)=1/3(3/(2sqrt2))=1/(2sqrt2)#
Applying the formula for
#tan(2theta)=(2tantheta)/(1-tan^2theta)=(2(1/(2sqrt2)))/(1-(1/(2sqrt2))^2)#
Simplifying:
#tan(2theta)=(1/sqrt2)/(1-1/8)=1/sqrt2(8/7)=(4sqrt2)/7#