How do you find the second derivative of #y=1/(t^2+1)#?
2 Answers
Explanation:
Chain rule:
Quotient rule and chain rule:
Explanation:
One way is to differentiate using the
#color(blue)"chain and product rules"#
#"Express " 1/(t^2+1)=(t^2+1)^-1# differentiate using the
#color(blue)"chain rule"#
#"given " y=f(g(x))" then"#
#• dy/dx=f'(g(x))xxg'(x)#
#rArrdy/dt=-(t^2+1)^-2xxd/dt(t^2+1)#
#color(white)(rArrdy/dt)=-2t(t^2+1)^-2#
#"differentiate "dy/dt" using the " color(blue)"product rule"#
#"given " f(x)=g(x).h(x)" then"#
#• f'(x)=g(x)h'(x)+h(x)g'(x)#
#g(t)=-2trArrg'(t)=-2#
#h(t)=(t^2+1)^-2rArrh'(t)=-2(t^2+1)^-3(2t)#
#color(white)(XXXXXXXXXXXXXX)=-4t(t^2+1)^-3#
#rArr(d^2y)/(dt^2)=-2t.-4t(t^2+1)^-3+(t^2+1)^-2(-2)#
#color(white)(rArrd^2y/dt^2)=8t^2(t^2+1)^-3-2(t^2+1)^-2#
#color(white)(rArrd^2y/dt^2)=2(t^2+1)^-3(4t^2-t^2-1)#
#color(white)(rArrd^2y/dt^2)=(6t^2-2)/(t^2+1)^3#