If #sin(theta) = 3/5# and #theta# is in Q1, then what is #sin(90^@+theta)# ?
1 Answer
Explanation:
Note that:
#cos^2 theta + sin^2 theta = 1#
So:
#cos theta = +-sqrt(1-sin^2 theta)#
#color(white)(cos theta) = +-sqrt(1-(3/5)^2)#
#color(white)(cos theta) = +-sqrt((25-9)/25)#
#color(white)(cos theta) = +-sqrt(16/25)#
#color(white)(cos theta) = +-4/5#
We can identify the correct sign as
So:
#cos theta = 4/5#
The sum of angles formula for
#sin(alpha+beta) = sin(alpha)cos(beta)+sin(beta)cos(alpha)#
Putting
#sin(90^@+theta) = sin(90^@)cos(theta)+sin(theta)cos(90^@)#
#sin(90^@+theta) = 1*cos(theta)+sin(theta)*0#
#sin(90^@+theta) = cos(theta)#
#sin(90^@+theta) = 4/5#
Note that in passing we have shown:
#sin(90^@+theta) = cos(theta)#
for any
That is,