How do you test the improper integral #int sintheta/sqrtcostheta# from #[0,pi/2]# and evaluate if possible?

1 Answer
Apr 13, 2017

#2#

Explanation:

#I=int_0^(pi/2)sintheta/sqrtcosthetad theta#

Use the substitution #u=costheta#. This implies that #du=-sinthetad theta#.

When we substitute this into the integral, we will have to transform the bounds by plugging the current ones into #costheta#, so the bound of #0# will become #cos(0)=1# and the bound of #pi/2# will become #cos(pi/2)=0#.

Then:

#I=-int_0^(pi/2)(-sintheta)/sqrtcostheta d theta=-int_1^0 1/sqrtudu#

Flipping the integral's bounds with the negative sign and rewriting the exponent:

#I=int_0^1u^(-1/2)du#

Using the rule #intu^ndu=u^(n+1)/(n+1)+C# but using the FTC to evaluate the integral:

#I=[u^(1/2)/(1/2)]_0^1=[2sqrtu]_0^1=2sqrt1-2sqrt0=2#