Find the maximum and minimum values for the function #f# defined by #f(x) = 2sinx + cos2x# in the interval #[0, pi/2]#?

1 Answer
Apr 13, 2017

Minimum:
#f(x) = {1, x=0, pi/2}#
Maximum:
#f(x) = {3/2, x=pi/6}#

Explanation:

#f(x) = 2sinx + cos2x#

#f'(x) = 2cosx - 2sin2x#

Now to find the critical number,

#f'(x) = 0#

#2cosx - 2sin2x = 0#
#2cosx-2(2sinxcosx) = 0#
#2cosx - 4sinxcosx = 0#
#2cosx(1-2sinx) = 0#

#2cosx=0#
#x = pi/2#

and #1-2sinx=0#
#x=pi/6#

Therefore,

When #x=0#, #f(x) = 2.0+1 = 1# and
when #x=pi/2, f(x) = 2.1-1=1#

And

when #x=pi/6, f(x) = 2.1/2+1/2 = 3/2#

Hence,

Minimum:
#f(x) = {1, x=0, pi/2}#
Maximum:
#f(x) = {3/2, x=pi/6}#