What is the equation of the line tangent to # f(x)=xsecx # at # x=pi/3#?
1 Answer
Apr 15, 2017
The equation is
Explanation:
We have
#f(pi/3) = (pi/3)sec(pi/3)#
#f(pi/3) = (pi/3)2#
#f(pi/3) = (2pi)/3#
Now, we find the derivative.
#f'(x) = 1(secx) + x(secxtanx)#
#f'(x) = secx + xsecxtanx#
#f'(x) = secx(1 + xtanx)#
Now find the slope of the tangent at
#f'(pi/3) = sec(pi/3)(1 + pi/3tan(pi/3))#
#f'(pi/3) = 2(1 + pi/3(sqrt(3))/1)#
#f'(pi/3) = 2(1 + (sqrt(3)pi)/3)#
#f'(pi/3) = 2 + 2/3sqrt(3)pi#
The equation of the line is therefore:
#y - y_1 = m(x - x_1)#
#y - (2pi)/3 = (2 + 2/3sqrt(3)pi)(x - pi/3)#
Hopefully this helps!