What is the equation of the line tangent to # f(x)=xsecx # at # x=pi/3#?

1 Answer
Apr 15, 2017

The equation is #y - (2pi)/3 = (2 + 2/3sqrt(3)pi)(x - pi/3)#

Explanation:

We have

#f(pi/3) = (pi/3)sec(pi/3)#

#f(pi/3) = (pi/3)2#

#f(pi/3) = (2pi)/3#

Now, we find the derivative.

#f'(x) = 1(secx) + x(secxtanx)#

#f'(x) = secx + xsecxtanx#

#f'(x) = secx(1 + xtanx)#

Now find the slope of the tangent at #x = pi/3#.

#f'(pi/3) = sec(pi/3)(1 + pi/3tan(pi/3))#

#f'(pi/3) = 2(1 + pi/3(sqrt(3))/1)#

#f'(pi/3) = 2(1 + (sqrt(3)pi)/3)#

#f'(pi/3) = 2 + 2/3sqrt(3)pi#

The equation of the line is therefore:

#y - y_1 = m(x - x_1)#

#y - (2pi)/3 = (2 + 2/3sqrt(3)pi)(x - pi/3)#

Hopefully this helps!