Question #d6cdd

3 Answers
Apr 19, 2017

The correct answer is #d#. See below.

Explanation:

Make sure you understand how to work with fractions. I would use the same approach as you wished to use.

We use #tanx = sinx/cosx# and #cotx = cosx/sinx#:

#=1 - sin^2x/(1 + cosx/sinx)- cos^2x/(1 +sinx/cosx)#

#=1 - sin^2x/((sinx + cosx)/sinx) - cos^2x/((cosx + sinx)/cosx)#

#=1 - ((sin^2x)sinx)/(sinx + cosx) - (cos^2x(cosx))/(cosx+ sinx)#

#=(sinx + cosx - sin^3x - cos^3x)/(cosx + sinx)#

You can factor the expression in the numerator.

#=(sinx(1 - sin^2x) + cosx(1 - cos^2x))/(cosx + sinx)#

Use #sin^2x + cos^2x = 1#.

#=(sinx(cos^2x) + cosx(sin^2x))/(cosx + sinx)#

#=(sinxcosx(cosx + sinx))/(cosx + sinx)#

#=sinxcosx#

So, the answer is #d#.

Hopefully this helps!

Apr 19, 2017

Refer to the Explanation.

Explanation:

The Expression#=1-sin^2x/(1+cotx)-cos^2x/(1+tanx)#

#=1-sin^2x/{1+cosx/sinx}-cos^2x/{1+sinx/cosx}#

#=1-sin^3x/(sinx+cosx)-cos^3x/(cosx+sinx)#

#=1-{(sin^3x+cos^3x)/(sinx+cosx)}#

Using, #a^3+b^3=(a+b)(a^2-ab+b^2)#, we get,

#"The Exp."=1-{(sinx+cosx)(sin^2x-sinxcosx+cos^2x)}/(sinx+cosx)#

#=1-{(1-sinxcosx)},.........[because, sin^2x+cos^2x=1]#

#:." The Exp.="sinxcosx, i.e., "Option d)."#

Enjoy Maths.!

Apr 19, 2017

"D" is the Correct Answer

Explanation:

first of all factor the (-1) from #-sin^2x/(1+cotx)-cos^2x/(1+tanx)#

you get #1-(sin^2x/(1+cotx)+cos^2x/(1+tanx))#

simplify each term on its own then add them

#sin^2x/(1+cotx)# = #sin^2/(1+cosx/sinx# = #sin^2/((sinx+cosx)/sinx)# = #sin^3x/(sinx+cosx)# -->"1"

#cos^2x/(1+tanx)# = #cos^2x/(1+sinx/cosx)# = #cos^2x/((sinx+cosx)/cosx)# = #cos^3x/(cosx+sinx)# --> "2"

summing 1,2

#(sin^3x+cos^3x)/(sinx+cosx)#

= #((sinx+cosx)(sin^2x-sinx*cosx+cos^2x))/(sinx+cosx)#

"cancelling #Sinx+cosx#" : #(sin^2x-sinx*cosx+cos^2x)# =

#1-cosx*sinx#

back to the full view : #1-(1-Cosx+sinx)# = #Cosx+sinx#