How do you order the following from least to greatest without a calculator #sqrt102, 10, 3pi, sqrt99, 1.1times10^1, 9.099#?
1 Answer
Apr 23, 2017
Explanation:
If
#sqrt(n) = a+b/(2a+b/(2a+b/(2a+b/(2a+...))))#
where
If
#sqrt(n) ~~ a+b/(2a) = a+(n-a^2)/(2a)#
#sqrt(102) ~~ 10+2/20 = 10.1#
#sqrt(99) ~~ 10-1/20 = 9.95#
Note also that:
#3pi ~~ 3*3.14 = 9.42#
#1.1 * 10^1 = 11#
So the correct order of the given numbers is:
#9.099, 3pi, sqrt(99), 10, sqrt(102), 1.1*10^1#