Prove that # cos A / (1- tan A) + sin A / (1- cot A) -= cos A + sin A #?

2 Answers
Apr 24, 2017

We want to prove that:

# cos A / (1- tan A) + sin A / (1- cot A) -= cos A + sin A #

If we manipulate the LHS we have:

# LHS = cos A / (1- tan A) + sin A / (1- cot A) #

# " " = cos A / (1- sinA/cosA) + sin A / (1- cosA/sinA) #

# " " = cos A / ((cosA- sinA)/cosA) + sin A / ((sinA- cosA)/sinA) #

# " " = cos^2 A / (cosA- sinA) + sin^2 A / (sinA- cosA) #

# " " = cos^2 A / (cosA- sinA) - sin^2 A / (cosA- sinA) #

# " " = (cos^2 A-sin^2A) / (cosA- sinA) #

# " " = ((cosA+sinA)(cosA-sinA)) / (cosA- sinA) #

# " " = cosA+sinA \ \ \ # QED

Apr 24, 2017

We want to prove that

#cosa/(1-tana)+sina/(1-cota)=cosa+sina#

Rewrite the left using only sines and cosines:

#cosa/(1-sina/cosa)+sina/(1-cosa/sina)=cos^2a/(cosa-sina)+sin^2a/(sina-cosa)#

Pulling a #-1# out of the denominator of the second term gives us the same denominator:

#=cos^2a/(cosa-sina)-sin^2a/(cosa-sina)=(cos^2a-sin^2a)/(cosa-sina)#

Factoring:

#=((cosa+sina)(cosa-sina))/(cosa-sina)=cosa+sina#

Which was originally the right hand side, so this is proven.