Prove that # cos A / (1- tan A) + sin A / (1- cot A) -= cos A + sin A #?
2 Answers
We want to prove that:
# cos A / (1- tan A) + sin A / (1- cot A) -= cos A + sin A #
If we manipulate the LHS we have:
# LHS = cos A / (1- tan A) + sin A / (1- cot A) #
# " " = cos A / (1- sinA/cosA) + sin A / (1- cosA/sinA) #
# " " = cos A / ((cosA- sinA)/cosA) + sin A / ((sinA- cosA)/sinA) #
# " " = cos^2 A / (cosA- sinA) + sin^2 A / (sinA- cosA) #
# " " = cos^2 A / (cosA- sinA) - sin^2 A / (cosA- sinA) #
# " " = (cos^2 A-sin^2A) / (cosA- sinA) #
# " " = ((cosA+sinA)(cosA-sinA)) / (cosA- sinA) #
# " " = cosA+sinA \ \ \ # QED
We want to prove that
#cosa/(1-tana)+sina/(1-cota)=cosa+sina#
Rewrite the left using only sines and cosines:
#cosa/(1-sina/cosa)+sina/(1-cosa/sina)=cos^2a/(cosa-sina)+sin^2a/(sina-cosa)#
Pulling a
#=cos^2a/(cosa-sina)-sin^2a/(cosa-sina)=(cos^2a-sin^2a)/(cosa-sina)#
Factoring:
#=((cosa+sina)(cosa-sina))/(cosa-sina)=cosa+sina#
Which was originally the right hand side, so this is proven.