Question #2c6b4

2 Answers
Apr 24, 2017

#int(sqrt(-x^2+2x+3))dx=4sin^-1((x-1)/2)#

Explanation:

#int(sqrt(-x^2+2x+3))dx#

Complete the square inside the square root
#int(sqrt(-(x^2-2x-3)))dx#

#int(sqrt(-(x-1)^2+4))dx#

Rewritten:
#int(sqrt(4-(x-1)^2))dx#

This format of square root of #sqrt(a^2-x^2)# can be associated with using a [trigonometric substitution](http://calculus.nipissingu.ca/tutorials/integrals.html#trs) for #asintheta#

(Made using Google Drawings)

#sintheta=frac{x-1}{2}#
#2sintheta=x-1#
#x=2sintheta+1#
#theta=sin^-1(frac{x-1}{2})#

#dx/(d theta)=2cos theta#
#dx=2costheta d theta#

#sectheta=sqrt(4-(x-1)^2)/2#
#sqrt(4-(x-1)^2)=2sectheta#

Now substitute these values into the the integral:
#int((2sectheta)2costheta )d theta#

#=int(4)d theta#

#=4theta#

#=4sin^-1(frac{x-1}{2})#

Apr 24, 2017

#int sqrt (3+2x-x^2) dx = 2arcsin((x-1)/2) + (x-1)/2sqrt(3+2x-x^2)+C#

Explanation:

We have:

#int sqrt (3+2x-x^2) dx#

Complete the square under the root:

#3+2x-x^2 = 4 - (1-x)^2 = 4 (1- ((1-x)/2)^2)#

and substitute:

#t= (1-x)/2#

#dt = -dx/2#

so that:

#int sqrt (3+2x-x^2) dx = int sqrt (4 (1- ((1-x)/2)^2))dx = 2int sqrt (1- ((1-x)/2)^2)dx = -4int sqrt(1-t^2)dt#

Substitute again:

#t = sinu#

#dt = cosu du#

and note that as the integrand is defined only for #t in [-1,1]# we have that #u in [-pi/2,pi/2]#:

#int sqrt(1-t^2)dt = int sqrt (1-sin^2u) cosu du = int sqrt (cos^2u) cosu du#

For #u in [-pi/2,pi/2]#, #cos u > 0#, then:

#int sqrt(1-t^2)dt = int cos^2udu#

Use now the trigonometric identity:

#cos^2theta = (1+cos2theta)/2#

#int cos^2udu = int (1+cos2u)/2 du = 1/2 int du + 1/4 int cos(2u)d(2u) = u/2 + sin (2u)/4+C = 1/2(u+sinucosu)+C#

Undo now the substitution:

#u = arcsint#

#sin u = t#

#cos u = sqrt(1-t^2)#

so:

#int sqrt(1-t^2)dt = 1/2(arcsint +tsqrt(1-t^2))+C#

and:

#int sqrt (3+2x-x^2) dx = -2(arcsin((1-x)/2) + ((1-x)/2)sqrt(1-((1-x)/2)^2))+C#

simplifying:

#int sqrt (3+2x-x^2) dx = 2arcsin((x-1)/2) + (x-1)/2sqrt(3+2x-x^2)+C#