The exponential function #e^x# can be defined as a power series as: #e^x=sum_(n=0)^oo x^n/(n!)=1+x+x^2/(2!)+x^3/(3!)+...# Can you use this definition to evaluate #sum_(n=0)^(oo)((0.2)^n e^-0.2)/(n!)#?
1 Answer
Apr 25, 2017
#sum_(n=0)^(oo)((0.2)^n e^-0.2)/(n!) = 1#
Explanation:
We can write the sum as:
#sum_(n=0)^(oo)((0.2)^n e^-0.2)/(n!) = e^-0.2 \ sum_(n=0)^(oo)((0.2)^n )/(n!) \ \ .....(star)#
And using the above sum definition of
# sum_(n=0)^(oo)((0.2)^n )/(n!) = e^(0.2)#
Substituting this result into
# sum_(n=0)^(oo)((0.2)^n e^-0.2)/(n!) = e^-0.2 \ e^(0.2) #
# " " = e^0 #
# " " = 1 #