How do you solve #4(u+1)+5=6(u-1)+u#?
1 Answer
Apr 26, 2017
Explanation:
Distribute brackets on both sides of the equation.
#4u+4+5=6u-6+u#
#"simplify both sides"#
#4u+9=7u-6#
#"subtract 7u from both sides"#
#4u-7u+9=cancel(7u)cancel(-7u)-6#
#rArr-3u+9=-6#
#"subtract 9 from both sides"#
#-3ucancel(+9)cancel(-9)=-6-9#
#rArr-3u=-15#
#"divide both sides by - 3"#
#(cancel(-9) u)/cancel(-9)=(-15)/(-3)#
#rArru=5#
#color(blue)"As a check"# Substitute this value into the equation and if both sides are equal then it is the solution.
#"left side "=4(5+1)+5=(4xx6)+5=24+5=29#
#"right side "=6(5-1)+5=(6xx4)+5=29#
#rArru=5" is the solution"#