If #y = sin^4x -cos^4x#, what is #dy/dx#?

3 Answers
May 2, 2017

Use the chain rule to differentiate both terms

Explanation:

The chain rule states #f'(g(x)) = f'(x)*g'(x)#
We can let #f(x) = x^4 and g(x) = sin(x)#, thus #f(g(x)) = sin^4(x)#
Similarly, we can let #h(x) = cos(x)# and so #f(h(x)) = cos^4(x)#

So then, #f'(g(x)) = 4(sin^3(x))*cos(x) = 4cos(x)sin^3(x)#

Similarly, #f'(h(x)) = 4cos^3(x)*(-sin(x)) = -4sin(x)cos^3(x)#

Thus the complete derivative becomes #4cos(x)sin^3(x) - -4sin(x)cos^3(x) = 4cos(x)sin^3(x) + 4sin(x)cos^3(x)#

The final answer can be simplified using trigonometric identities.

May 2, 2017

#dy/dx=4sin^3xcosx+4sinxcos^3x#

#=2sin(2x)#

Explanation:

#y=sin^4x-cos^4x#

Use the chain rule to differentiate:

The chain rule states that: #(f(g(x)))'=f'(g(x))*g'(x)#

#dy/dx=4sin^3x(cosx)-4cos^3x(-sinx)#

#dy/dx=4sin^3xcosx+4sinxcos^3x#

Use the following trigonometric identities to simplify:

#color(blue)(sin^2x+cos^2x=1)#
#color(red)(sin(2x)=2sinxcosx)#

#dy/dx=sinxcosx[4color(blue)(sin^2x)+4color(blue)(cos^2x)]#

#=sinxcosx[4(color(blue)(sin^2x+cos^2x))]#

#=4sinxcosx#

#=2(color(red)(2sinxcosx))#

#=2color(red)(sin(2x))#

May 2, 2017

#dy/dx= 2sin2x#

Explanation:

We notice that the function is a difference of squares.

Therefore,

#y= (sin^2x- cos^2x)(sin^2x + cos^2x)#

Use #sin^2x+ cos^2x = 1#:

#y = sin^2x - cos^2x#

#y = -(cos^2x- sin^2x)#

Now use #cos2x= cos^2x- sin^2x#

#y = -cos2x#

Now by the chain rule, we have:

#dy/dx = 2sin(2x)#

This is because the derivative of #-cosa = a'sina#

Hopefully this helps!