The point (-12,-5) is on the terminal side of an angle in standard position, how do you determine the exact values of the six trigonometric functions of the angle?

1 Answer
May 2, 2017

See explanation.

Explanation:

To calculate the values of trigonometric functions you have to calculate the distance between the point ant the origin:

#r=sqrt((-12-0)^2+(-5-0)^2)=sqrt(144+25)=sqrt(169)=13#

Now we can calculate the trigonometric functions:

#sin alpha=y/r=(-5)/13=-5/13#

#cos alpha=x/r=(-12)/13=-12/13#

#tan alpha = y/x=(-5)/(-12)=5/12#

#cot alpha = x/y=(-12)/(-5)=12/5=2 2/5#

#sec alpha = r/x=13/(-12)=-1 1/12#

#csc alpha = r/y=13/(-5)=-2 3/5#