How do you order the following from least to greatest #sqrt2, 2.1, -sqrt4, 0, -5/2#?

1 Answer
May 3, 2017

#-5/2, -sqrt4, 0, sqrt2, 2.1#

Explanation:

#sqrt2, 2.1, -sqrt4, 0, -5/2#

ordering these can be done without using a calculator.

first, convert all numbers to square roots:

#sqrt2 = sqrt2#

#2.1 = sqrt(2.1^2) = sqrt(2.1*2.1) = sqrt4.41#

#-sqrt4 = -sqrt4#

#0=sqrt0#

#-5/2 = -sqrt(5^2/2^2) = -sqrt(25/4) = -sqrt6.25#

#sqrt2, sqrt4.41, -sqrt4, sqrt0, -sqrt6.25#

then order them:

#-sqrt4, sqrt0, sqrt2, sqrt4.41, -sqrt6.25#

you can then convert these back to the original numbers:

#-5/2, -sqrt4, 0, sqrt2, 2.1#