How do you solve #(y^2+5y-6)/(y^3-2y^2)=5/y-6/(y^3-2y^2)#?

1 Answer
May 7, 2017

Restrict the domain to prevent division by 0.
Multiply both sides by a factor that eliminates the denominators.
Solve the resulting quadratic equation.

Explanation:

Given: #(y^2+5y-6)/(y^3-2y^2)=5/y-6/(y^3-2y^2)#

Restrict the domain to prevent division by 0.

#(y^2+5y-6)/(y^3-2y^2)=5/y-6/(y^3-2y^2); y !=0, y!=2#

Multiply both sides by a factor that eliminates the denominators.

#(y^2+5y-6)/(y^3-2y^2)(y^3-2y^2)=5/y(y^3-2y^2)-6/(y^3-2y^2)(y^3-2y^2); y !=0, y!=2#

#(y^2+5y-6)/cancel(y^3-2y^2)cancel(y^3-2y^2)=5/cancely(cancel(y)(y^2-2y))-6/cancel(y^3-2y^2)cancel(y^3-2y^2); y !=0, y!=2#

#y^2+5y-6=5(y^2-2y)-6; y !=0, y!=2#

#y^2+5y-6=5y^2-10y-6; y !=0, y!=2#

#0=4y^2-15y; y !=0, y!=2#

Solve the resulting equation quadratic equation.

#0=4y^2-15y; y !=0, y!=2#

Factor:

#y(4y-15)=0#; y !=0, y=2

Because of the restriction #y!=0#, we discard the #y# factor:

#4y-15=0#

#y = 15/4#