How do you divide #3x^3 - 3x^2 - 4x + 3# by x + 3?
2 Answers
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(3x^2)(x+3)color(magenta)(-9x^2)-3x^2-4x+3#
#=color(red)(3x^2)(x+3)color(red)(-12x)(x+3)color(magenta)(+36x)-4x+3#
#=color(red)(3x^2)(x+3)color(red)(-12x)(x+3)color(red)(+32)(x+3)color(magenta)(-96)+3#
#=color(red)(3x^2)(x+3)color(red)(-12x)(x+3)color(red)(+32)(x+3)-93#
#"quotient "=color(red)(3x^2-12x+32)," remainder "=-93#
#rArr(3x^3-3x^2-4x+3)/(x+3)=3x^2-12x+32-93/(x+3)#
The quotient is
Explanation:
We perform a long division
Therefore,