What's under the square root sign is #>=0#
So,
#x^3-64x>=0#
#x^3-64x=x(x^2-64)=x(x+8)(x-8)#
Let #g(x)=x(x+8)(x-8)>=0#
We build a sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-8##color(white)(aaaa)##0##color(white)(aaaaa)##+8##color(white)(aaaaa)##+oo#
#color(white)(aaaa)##x+8##color(white)(aaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+##color(white)(aaaaa)##+#
#color(white)(aaaa)##x##color(white)(aaaaaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaaaa)##+#
#color(white)(aaaa)##x-8##color(white)(aaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##-##color(white)(aaaaa)##+#
#color(white)(aaaa)##g(x)##color(white)(aaaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##-##color(white)(aaaaa)##+#
Therefore,
#g(x)>=0# when #x in [-8,0] uu [8,+oo)# graph{sqrt(x^3-64x) [-27.54, 30.2, -4.14, 24.74]}