How do you find the volume of the solid #y=4-x^2# revolved about the x-axis?

1 Answer
May 20, 2017

Use the disc method. The volume is #107.233#.

Explanation:

First, set #y# equal to #0# to find the bounds.

#0=4-x^2#
#x^2=4#
#x in {-2,2}#

So our bounds are #-2# and #2#.

Next, use the disc method to find the volume (#y = r#).

#int_-2^2piy^2 dx = piint_-2^2(4-x^2)^2dx#

# = piint_-2^2(16-8x^2+x^4)dx#

#= pi [16x-8/3x^3+x^5/5]_-2^2#

#= pi (32-64/3+32/5)-pi(-32+64/3-32/5)#

#=512/15pi#

#=107.233#

Final Answer