How do you solve #y+6=2x# & #4x-10y=4#?
2 Answers
Explanation:
Strategy: Solve for
Step 1. Solve for
Step 2. Plug this
Step 3. Plug this solution back into the equation of step 1.
So your solution is
Explanation:
#color(red)(y)+6=2xto(1)#
#4x-10color(red)(y)=4to(2)#
#"note that in " (1)" y can be expressed in terms of x"#
#rArrcolor(red)(y)=2x-6to(3)#
#"substitute into " (2)#
#rArr4x-10(2x-6)=4#
#rArr4x-20x+60=4larr" distributing"#
#rArr-16x+60=4larr" simplifying left side"#
#"subtract 60 from both sides"#
#-16xcancel(+60)cancel(-60)=4-60#
#rArr-16x=-56#
#"divide both sides by - 16"#
#(cancel(-16) x)/cancel(-16)=(-56)/(-16)#
#rArrx=56/16=7/2#
#"substitute this value in " (3)" and evaluate for y"#
#y=(2xx7/2)-6=7-6=1#
#(7/2,1)" is the point of intersection of the 2 equations"#
graph{(y-2x+6)(y-2/5x+2/5)=0 [-10, 10, -5, 5]}