What's uner the #sqrt# sign is #>=0#
So,
#(13x)/(x^2-1)>=0#
#(13x)/((x+1)(x-1))>=0#
Let #f(x)=(13x)/((x+1)(x-1))#
We can build a sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaa)##-1##color(white)(aaaaa)##0##color(white)(aaaaaaa)##+1##color(white)(aaaa)##+oo#
#color(white)(aaaa)##x+1##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aaaa)##+##color(white)(aaaa)##||##color(white)(aa)##+#
#color(white)(aaaa)##x##color(white)(aaaaaaa)##-##color(white)(aaaa)##||##color(white)(aa)##-##color(white)(aaaa)##+##color(white)(aaaa)##||##color(white)(aa)##+#
#color(white)(aaaa)##x-1##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aa)##-##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+#
Therefore,
#f(x)>=0# when #x in (-1,0] uu (+1,+oo)#
The domain is #x in (-1,0] uu (+1,+oo)#
Let,
#y=sqrt((13x)/(x^2-1))#
When #x=-1#, #=>#, #y=+oo#
When #x=0#, #=>#, #y=0#
The range is #y in [0,+oo)#