How do you solve #\frac { 11x } { 4} - 9= \frac { x } { 2} + 45#?

2 Answers
May 30, 2017

See a solution process below:

Explanation:

First, add #color(red)(9)# and subtract #color(blue)(x/2)# from each side of the equation to isolate the #x# term while keeping the equation balanced:

#-color(blue)(x/2) + (11x)/4 - 9 + color(red)(9) = -color(blue)(x/2) + x/2 + 45 + color(red)(9)#

#-color(blue)(x/2) + (11x)/4 - 0 = 0 + 54#

#-x/2 + (11x)/4 = 54#

Next, put the fractions on the left side of the equation over common denominators and perform the addition:

#(2/2 xx -x/2) + (11x)/4 = 54#

#(-2x)/4 + (11x)/4 = 54#

#(-2x + 11x)/4 = 54#

#((-2 + 11)x)/4 = 54#

#(9x)/4 = 54#

Now, multiply each side of the equation by #color(red)(4)/color(blue)(9)# to solve for #x# while keeping the equation balanced:

#color(red)(4)/color(blue)(9) xx (9x)/4 = color(red)(4)/color(blue)(9) xx 54#

#cancel(color(red)(4))/cancel(color(blue)(9)) xx (color(blue)(cancel(color(black)(9)))x)/color(red)(cancel(color(black)(4))) = color(red)(4)/cancel(color(blue)(9)) xx color(blue)(cancel(color(black)(54)))6#

#x = 24#

Jun 12, 2017

#color(brown)(x=24#

Explanation:

#(11x)/4-9=x/2+45#

multiply both sides by 4

#:.11x-36=2x+180#

#:.11x-2x=180+36#

#:.9x=216#

#:.x=216/9#

#:.color(brown)(x=24#

substitute #color(brown)(x=24#

#:.(11(color(brown)24))/4-9=((color(brown)24))/2+45#

#:.264/4-9=12+45#

#:.66-9=57#

#:.color(brown)(57=57#