First, add #color(red)(9)# and subtract #color(blue)(x/2)# from each side of the equation to isolate the #x# term while keeping the equation balanced:
#-color(blue)(x/2) + (11x)/4 - 9 + color(red)(9) = -color(blue)(x/2) + x/2 + 45 + color(red)(9)#
#-color(blue)(x/2) + (11x)/4 - 0 = 0 + 54#
#-x/2 + (11x)/4 = 54#
Next, put the fractions on the left side of the equation over common denominators and perform the addition:
#(2/2 xx -x/2) + (11x)/4 = 54#
#(-2x)/4 + (11x)/4 = 54#
#(-2x + 11x)/4 = 54#
#((-2 + 11)x)/4 = 54#
#(9x)/4 = 54#
Now, multiply each side of the equation by #color(red)(4)/color(blue)(9)# to solve for #x# while keeping the equation balanced:
#color(red)(4)/color(blue)(9) xx (9x)/4 = color(red)(4)/color(blue)(9) xx 54#
#cancel(color(red)(4))/cancel(color(blue)(9)) xx (color(blue)(cancel(color(black)(9)))x)/color(red)(cancel(color(black)(4))) = color(red)(4)/cancel(color(blue)(9)) xx color(blue)(cancel(color(black)(54)))6#
#x = 24#