How do you rotate the figure B(-2,0), C(-4,3), Z(-3,4), and X(-1,4) 90 degree clockwise about the origin?

1 Answer
Jun 4, 2017

Please see below.

Explanation:

When we rotate a point (x,y) clockwise by 90^@ about the origin, it takes the position (y,-x). Hence the figure formed by B(-2,0), C(-4,3), Z(-3,4) and X(-1,4), which appears below

graph{((x+4)^2+(y-3)^2-0.02)((x+1)^2+(y-4)^2-0.02)((x+3)^2+(y-4)^2-0.02)((x+2)^2+y^2-0.02)=0 [-10, 10, -5, 5]}

will become

B'(0,2), C'(3,4), Z'(4,3) and X'(4,1)

graph{(x^2+(y-2)^2-0.02)((x-3)^2+(y-4)^2-0.02)((x-4)^2+(y-3)^2-0.02)((x-4)^2+(y-1)^2-0.02)=0 [-10, 10, -5, 5]}