How do you find the roots of #x^3-x^2-17x+15=0#?
2 Answers
Explanation:
Now we can use the quadratic equation to solve.
We can simplify some things that we don't need to make the equation more simple.
Three real roots:
#x_n = 1/3(1+4sqrt(13) cos(1/3 cos^(-1)(-(125sqrt(13))/1352)+(2npi)/3))#
for
Explanation:
Given:
#x^3-x^2-17x+15 = 0#
First use a Tschirnhaus transformation:
#0 = 27(x^3-x^2-17x+15)#
#color(white)(0) = 27x^3-27x^2-459x+405#
#color(white)(0) = (3x-1)^3-156(3x-1)+250#
#color(white)(0) = t^3-156t+250" "# where#" "t=3x-1#
Let:
#k=2sqrt(-(color(blue)(-156))/3) = 4sqrt(13)#
Note that:
#k^3/4 = 52 k = 208sqrt(13)#
Substitute:
#t = k cos theta#
Then our equation becomes:
#0 = (k cos theta)^3-156(k cos theta)+250#
#color(white)(0) = 208sqrt(13)(4 cos^3 theta - 3 cos theta)+250#
#color(white)(0) = 208sqrt(13)cos 3 theta+250#
So:
#cos 3 theta = -250/(208sqrt(13)) = -(125sqrt(13))/1352#
So:
#3 theta = +-cos^(-1)(-(125sqrt(13))/1352)+2npi#
So:
#cos theta = cos(1/3cos^(-1)(-(125sqrt(13))/1352)+(2npi)/3)#
So:
#t_n = 4sqrt(13) cos(1/3cos^(-1)(-(125sqrt(13))/1352)+(2npi)/3)#
with distinct roots for
Hence solutions of the original cubic:
#x_n = 1/3(1+4sqrt(13) cos(1/3 cos^(-1)(-(125sqrt(13))/1352)+(2npi)/3))#
for
#x_0 ~~ 4.19825#
#x_1 ~~ -4.07504#
#x_2 ~~ 0.876781#
graph{x^3-x^2-17x+15 [-10, 10, -52, 52]}
Footnote
I suspect there is a typo in the question. If the sign on the
#0 = x^3+x^2-17x+15#
#color(white)(0) = (x-1)(x^2+2x-15)#
#color(white)(0) = (x-1)(x+5)(x-3)#
and hence roots