How do you integrate #\int _ { 0} ^ { 1} \frac { x } { \sqrt { 1+ x ^ { 2} } } d x#?

1 Answer
Jun 10, 2017

#int_0^1x/(sqrt(1+x^2))dx=sqrt2-1#

Explanation:

Let #x=tantheta#, then #dx=sec^2theta d theta#

and #int_0^1x/(sqrt(1+x^2))dx#

= #int_0^(pi/4)tantheta/sectheta sec^2theta d theta#

= #int_0^(pi/4)tanthetasectheta d theta#

= #|sectheta|_0^(pi/4)#

= #sqrt2-1#