How do you complete the square to solve #x^2+x=19/4#?

2 Answers
Jun 12, 2017

#x=-1/2+sqrt5#
#x=-1/2-sqrt5#

Explanation:

Given -

#x^2+x=19/4#

#x^2+x+1/4=19/4+1/4=(19+1)/4=20/4#

#(x+1/2)^2= 20/4#

#(x+1/2)=+-sqrt (20/4)=+-(sqrt5xxcancelsqrt(4))/cancelsqrt(4)#
#x+1/2=+-sqrt 5#

#x=-1/2+sqrt5#
#x=-1/2-sqrt5#

Jun 12, 2017

#x=-1/2-sqrt5# or #x=-1/2+sqrt5#

Explanation:

Remember the identity #a^2+2xxaxxb+b^2=(a+b)^2#. We have

#x^2+x=19/4#

or #x^2+2xx x xx 1/2=19/4#

Hence to complete square we must add #(1/2)^2# on both sides, as comparing it with above identity, we get #b=1/2# and our equation becomes

#x^2+2xx x xx 1/2+(1/2)^2=19/4+1/4#

or #(x+1/2)^2=5=(sqrt5)^2#

or #(x+1/2)^2-(sqrt5)^2=0#

and using the identity #a^2-b^2=(a+b)(a-b)#, this becomes

#(x+1/2+sqrt5)(x+1/2-sqrt5)=0#

Hence either #x+1/2+sqrt5=0# i.e. #x=-1/2-sqrt5#

or #x+1/2-sqrt5=0# i.e. #x=-1/2+sqrt5#