How do you find the gradient of the curve #y=(3x-9)/(2x^2)# at the point where the curve crosses the #x#-axis?

2 Answers

When the curve crosses the x-axis, the gradient of the curve is #1/6#.

Explanation:

Given-

#y=(3x-9)/(2x^2)#

The curve crosses the x-axis at #y=0#

Then -

#(3x-9)/(2x^2)=y#
#(3x-9)/(2x^2)=0#
#(3x-9)=0 xx 2x^2#
#3x-9=0#
#3x=9#
#x=9/3=3#

At #x=3# the curve crosses the x-axis.

The first derivative of the given function gives the gradient of the curve at any point.

#dy/dx=[[(2x^2)(3)]-[(3x-9)(4x)]]/(2x^2)^2#

#dy/dx=[[6x^2]-[12x^2-36x]]/(4x^4)#

#dy/dx=(6x^2-12x^2+36x)/(4x^4)#

#dy/dx=(-6x^2+36x)/(4x^4)#

When the curve crosses the x-axis, the y- coordinate is 0.

At #x=3: dy/dx=(-6(3^2)+36(3))/(4(3^4))=(-54+108)/324=54/324=1/6#

When the curve crosses the x-axis, the gradient of the curve is#1/6#.

Jun 14, 2017

The gradient is #1/6#

Explanation:

The curve will cross the x-axis as an x-intercept, aka #y = 0#.

#0 = (3x - 9)/(2x^2)#

#3x - 9 = 0#

#x = 3#

We now find the derivative.

#y = (3x - 9)/(2x^2)#

#y = 3/(2x) - 9/(2x^2)#

#y = 3/2x^-1 - 9/2x^-2#

#y' = -3/2x^(-2) - 9/2(-2)x^(-3)#

#y'= 9/x^3 - 3/(2x^2)#

The slope of the tangent at that point is

#y'(3) = 9/3^3 - 3/(2(3)^2)#

#y'(3) = 1/3 - 3/(18)#

#y'(3) = 1/3 - 1/6#

#y'(3) = 1/6#

Here is the graph of the function with the tangent at #x = 3#.

enter image source here

Hopefully this helps!