How do you find the first two nonzero terms in Maclaurin's Formula and use it to approximate #f(1/3)# given #f(x)=arcsinx#?
1 Answer
Knowing that
Note the binomial series:
#(1+z)^alpha=sum_(k=0)^oo((alpha),(k))z^k#
Where
So, when
#k=0=>((-1/2),(0))(-x^2)^0=1/(0!)=1#
#k=1=>((-1/2),(1))(-x^2)^1=(-1/2)1/(1!)(-x^2)=x^2/2#
#k=2=>((-1/2),(2))(-x^2)^2=(-1/2)(-3/2)1/(2!)x^4=(3x^4)/8#
Continuing this process, if you wish, gives:
#1/sqrt(1-x^2)approx1+x^2/2+(3x^4)/8+(5x^6)/16+(35x^8)/128+...#
Then,
#arcsinx=intdx/sqrt(1-x^2)=int(1+x^2/2+(3x^4)/8+(5x^6)/16+(35x^8)/128+...)dx#
Using the first two nonzero terms, this gives:
#arcsinxapproxx+x^3/6#
Then,
#arcsin(1/3)approx1/3+(1//3)^3/6=1/3+1/(162)=0.339506...#
Compare this to the more exact value,