We have, #(cosA+cosB)/(sinA-sinB)#
#={2cos((A+B)/2)cos((A-B)/2)}/{2cos((A+B)/2)sin((A-B)/2)},#
#:. (cosA+cosB)/(sinA-sinB) =cot((A-B)/2)=x, say, ......(1),# where,
#x=cot((A-B)/2).#
Likewise, #(sinA+sinB)/(cosA-cosB)=-cot((A-B)/2)=-x, ........(2).#
#:. {(cosA+cosB)/(sinA-sinB)}^m+{(sinA+sinB)/(cosA-cosB)}^m, m in NN,#
#=x^m+(-x)^m,#
#=x^m+(-1)^mx^m,#
#={(-1)^m+1}x^m,#
#={(-1)^m+1}cot^m((A-B)/2), m in NN.#
Case 1 : #m in NN, m" is odd."#
#:. (-1)^m+1=-1+1=0.#
# rArr {(cosA+cosB)/(sinA-sinB)}^m+{(sinA+sinB)/(cosA-cosB)}^m, m in NN, m" is odd",#
#={(-1)^m+1}cot^m((A-B)/2), m in NN, m" is odd,"#
#=0.#
Case 2 : #m in NN, m" is even."#
Here, #(-1)^m+1=1+1=2.#
# rArr {(cosA+cosB)/(sinA-sinB)}^m+{(sinA+sinB)/(cosA-cosB)}^m, m in NN, m" is even",#
#={(-1)^m+1}cot^m((A-B)/2), m in NN, m" is even,"#
#=2cot^m((A-B)/2).#
Hence, the Proof.
Enjoy Maths.!