What are the zeros of #x^4-26x^2+1# ?

2 Answers
Jun 20, 2017

Four zeros are #sqrt7+sqrt6#, #-sqrt7-sqrt6#, #sqrt7-sqrt6# or #sqrt6-sqrt7#

Explanation:

Let #x^2=t#,, then we can write #x^4-26x^2+1# as

#t^2-26t+1#

Using quadratic formula zeros of this are given by

#(26+-sqrt(26^2-4xx1xx1))/2=(26+-sqrt672)/2#

or #13+-2sqrt42#

i.e. either #x^2=13+2sqrt42#

= #7+6+2sqrt42#

= #(sqrt7)^2+(sqrt6)^2+2xxsqrt7xxsqrt6#

= #(sqrt7+sqrt6)^2#

and #x=sqrt7+sqrt6# or #-sqrt7-sqrt6# ................(A)

or #x^2=13-2sqrt42#

= #7+6-2sqrt42#

= #(sqrt7)^2+(sqrt6)^2-2xxsqrt7xxsqrt6#

= #(sqrt7-sqrt6)^2#

and #x=sqrt7-sqrt6# or #sqrt6-sqrt7# ................(B)

Hence, four zeros are #sqrt7+sqrt6#, #-sqrt7-sqrt6#, #sqrt7-sqrt6# or #sqrt6-sqrt7#

Jun 20, 2017

#+-sqrt(7)+-sqrt(6)#

Explanation:

"If all you have is a hammer, then everything looks like a nail"
- Abraham Maslow (1966)

#color(white)()#
Given:

#x^4-26x^2+1#

It seems to me that the natural tendency is to notice that this is a quadratic in #x^2#.

Let's see what happens if we just follow that course (using completing the square, though the quadratic formula is basically the same)...

#x^4-26x^2+1 = (x^2)^2-2(13)x^2+13^2-168#

#color(white)(x^4-26x^2+1) = (x^2-13)^2-(2sqrt(42))^2#

#color(white)(x^4-26x^2+1) = (x^2-13-2sqrt(42))(x^2-13+2sqrt(42))#

Hence:

#x = +-sqrt(13+-2sqrt(42))#

We can then attempt to simplify this. This is a perfectly viable approach, but it may be easier to do something a little different...

#color(white)()#
Alternatively, we can use one of the following factorisations:

#(a^2-kab+b^2)(a^2+kab+b^2) = a^4+(2-k^2)a^2b^2+b^4#

#(a^2-kab-b^2)(a^2+kab-b^2) = a^4-(2+k^2)a^2b^2+b^4#

So we find:

#x^4-26x^2+1 = (x^2-2sqrt(7)x+1)(x^2+2sqrt(7)x+1)#

Or:

#x^4-26x^2+1 = (x^2-2sqrt(6)x-1)(x^2+2sqrt(6)x-1)#

We can then use our favourite quadratic method to find things like:

#x^2-2sqrt(7)x+1 = x^2-2sqrt(7)x+7-6#

#color(white)(x^2-2sqrt(7)x+1) = (x-sqrt(7))^2-(sqrt(6))^2#

#color(white)(x^2-2sqrt(7)x+1) = (x-sqrt(7)-sqrt(6))(x-sqrt(7)+sqrt(6))#

#color(white)()#

#x^2+2sqrt(7)x+1 = (x+sqrt(7)-sqrt(6))(x+sqrt(7)+sqrt(6))#

Hence the zeros of our quartic are:

#+-sqrt(7)+-sqrt(6)#