How do you integrate #\int \frac { x ^ { 2} + 2} { \root[ 3] { x ^ { 3} + 6x + 1} } d x#?
1 Answer
Jun 23, 2017
The integral equals
Explanation:
We let
#I = int (x^2 + 2)/root(3)(u)* (du)/(3(x^2 + 2))#
#I = 1/3 int 1/root(3)(u) du#
#I = 1/3int u^(-1/3)#
Now use
#I = 1/2u^(2/3) + C#
#I = 1/2(x^3 + 6x + 1)^(2/3) + C#