Question #890e9

2 Answers
Jun 23, 2017

#int tanx/(sqrt(sec^2x-4)) dx = -1/2 arcsin(2cosx) + C#

Explanation:

Use the trigonometric identities:

#tanx =sinx/cosx#

#secx = 1/cosx#

so that:

#int tanx/(sqrt(sec^2x-4)) dx = int sinx/cosx 1/sqrt(1/cos^2x -4)dx#

#int tanx/(sqrt(sec^2x-4)) dx =int sinx/sqrt(1 -4cos^2x)dx#

substitute:

#t = 2cosx#

#dt = -2sinx#

#int tanx/(sqrt(sec^2x-4)) dx =-1/2 int dt/sqrt(1-t^2) = -1/2arcsint+C#

and undoing the substitution:

#int tanx/(sqrt(sec^2x-4)) dx = -1/2 arcsin(2cosx) + C#

Jun 24, 2017

#1/2sec^-1(sec(x)/2)+C#

Explanation:

We can also try letting #sec(x)=2sec(theta)#, implying that #sec(x)tan(x)dx=2sec(theta)tan(theta)d theta#. Then:

#I=inttan(x)/sqrt(sec^2(x)-4)dx=int(sec(x)tan(x)dx)/(sec(x)sqrt(sec^2(x)-4))#

#color(white)I=int(2sec(theta)tan(theta)d theta)/(2sec(theta)sqrt(4sec^2(theta)-4))=inttan(theta)/(2sqrt(sec^2(theta)-1))d theta#

And since #sec^2(theta)-1=tan^2(theta)#:

#I=1/2intd theta=1/2theta+C#

Reverse the substitution #sec(x)=2sec(theta)#:

#I=1/2sec^-1(sec(x)/2)+C#

Compared graphically, you can see that #1/2sec^-1(sec(x)/2)# and the other presented solution #-1/2sin^-1(2cos(x))# are different by only a constant, so they are both valid solutions.