How do you factor #16x ^ { 2} - 40x + 2#?

2 Answers
Jun 25, 2017

#(x - (5 + sqrt 23)/4)(x - (5 - sqrt 23)/4) * 16#

Explanation:

#8x^2 - 20x + 1 = 0#

#Delta = 400 - 4 * 8 = 368 = 2^4 * 23#

#x = (20 ± 4 sqrt 23)/16 = (5 ± sqrt 23)/4#

Jun 25, 2017

#f(x) = 16(x - 5/4 - sqrt23/4)(x - 5/4 + sqrt23/4)#

Explanation:

#f(x) = 16x^2 - 40 x + 2 = 2y = 2(8x^2 - 20x + 1)#
Factor #y = 8x^2 - 20 x + 1#
#D = d^2 = b^2 - 4ac = 400 - 32 = 368# --> #d = +- 4sqrt23#
There are 2 real roots:
#x = -b/(2a) +- d/(2a) = 20/16 +- (4sqrt23)/16#
#x1 = 5/4 + sqrt23/4#, and
#x2 = 5/4 - sqrt23/4#
The factored form of y is:
#y = a(x - x1)(x - x2) =#
#y = 8(x - - 5/4 - sqrt23/4)(x - 5/4 + sqrt23/4)#
Finally,
#f(x) = 16(x - 5/4 - sqrt23/4)(x - 5/4 + sqrt23/4)#

Note. You may apply the expression of the quadratic function in intercept form (Google Search):
#y = a(x - b/(2a) - d/(2a))(x - b/(2a) + d/(2a))#