Find the derivative of #f(x)=3sqrtx# using limit definition of derivative?

1 Answer
Jun 26, 2017

#d/(dx) 3sqrtx=3/(2sqrtx)#

Explanation:

For a function #f(x)#, limit definition of derivative is

#(df)/(dx)=Lt _(h->0) (f(x+h)-f(x))/h#

Here #f(x)=3sqrtx#

and hence #f(x+h)=3sqrt(x+h)# and hence

#(df)/(dx)=Lt _(h->0) (3sqrt(x+h)-3sqrtx)/h#

= #3Lt_(h->0)((sqrt(x+h)-sqrtx)(sqrt(x+h)+sqrtx))/(h(sqrt(x+h)+sqrtx))#

= #3Lt_(h->0)(x+h-x)/(h(sqrt(x+h)+sqrtx))#

= #3Lt_(h->0)h/(h(sqrt(x+h)+sqrtx))#

= #3Lt_(h->0)1/(sqrt(x+h)+sqrtx)#

= #3xx1/(2sqrtx)#

= #3/(2sqrtx)#