#4 sin x - 3 cos x = sin 3x# ?

2 Answers
Jun 29, 2017

Hmmm...

Explanation:

It looks to me like you have slightly misremembered a standard trigonometric identity:

#sin 3x = 3 sin x - 4sin^3 x#

or perhaps:

#cos 3x = 4 cos^3 x - 3 cos x#

We can derive both of these formulae from a combination of de Moivre's theorem and Pythagoras:

#cos nx + i sin nx = (cos x + i sin x)^n#

#cos^2 x + sin^2 x = 1#

So we find:

#cos 3x+i sin 3x#

#=(cos x + i sin x)^3#

#=cos^3 x + 3 i cos^2 x sin x - 3 cos x sin^2 x - i sin^3 x#

#= (cos^3 x - 3 cos x sin^2 x) + i(3cos^2 x sin x - sin^3 x)#

Equating Real parts we have:

#cos 3x = cos^3 x - 3 cos x sin^2 x#

#color(white)(cos 3x) = cos^3 x - 3 cos x (1 - cos^2 x)#

#color(white)(cos 3x) = 4 cos^3 x - 3 cos x#

Equating imaginary parts we have:

#sin 3x = 3cos^2 x sin x - sin^3 x#

#color(white)(sin 3x) = 3(1 - sin^2 x) sin x - sin^3 x#

#color(white)(sin 3x) = 3sin x - 4sin^3 x#

Jun 29, 2017

#x = pi/4 + npi" "# for any integer #n#

Explanation:

Perhaps this is not an attempt at an identity, but an equation to be solved.

In which case:

#4 sin x - 3 cos x = sin 3x = 3 sin x - 4 sin^3 x#

Hence:

#4 sin^3 x + sin x = 3 cos x#

Square both sides to get:

#16 sin^6 x + 8 sin^4 x + sin^2x = 9 cos^2 x = 9 - 9 sin^2 x#

Hence:

#0 = 16 sin^6 x + 8 sin^4 x + 10 sin^2 x - 9#

#color(white)(0) = (2 sin^2 x - 1)(8 sin^4 x + 8 sin^2 x + 9)#

This has only one real root and hence we find:

#sin^2 x = 1/2#

So:

#sin x = +-sqrt(2)/2#

If #sin x = sqrt(2)/2# then:

#3 cos x = 4 sin^3 x + sin x = 3(sqrt(2)/2)#

hence #x = pi/4+2npi" "# for any integer #n#

If #sin x = -sqrt(2)/2# then:

#3 cos x = 4 sin^3 x + sin x = 3(-sqrt(2)/2)#

hence #x = (3pi)/4 + 2npi" "# for any integer #n#

So the general solution is:

#x = pi/4 + npi" "# for any integer #n#