#4 sin x - 3 cos x = sin 3x# ?
2 Answers
Hmmm...
Explanation:
It looks to me like you have slightly misremembered a standard trigonometric identity:
#sin 3x = 3 sin x - 4sin^3 x#
or perhaps:
#cos 3x = 4 cos^3 x - 3 cos x#
We can derive both of these formulae from a combination of de Moivre's theorem and Pythagoras:
#cos nx + i sin nx = (cos x + i sin x)^n#
#cos^2 x + sin^2 x = 1#
So we find:
#cos 3x+i sin 3x#
#=(cos x + i sin x)^3#
#=cos^3 x + 3 i cos^2 x sin x - 3 cos x sin^2 x - i sin^3 x#
#= (cos^3 x - 3 cos x sin^2 x) + i(3cos^2 x sin x - sin^3 x)#
Equating Real parts we have:
#cos 3x = cos^3 x - 3 cos x sin^2 x#
#color(white)(cos 3x) = cos^3 x - 3 cos x (1 - cos^2 x)#
#color(white)(cos 3x) = 4 cos^3 x - 3 cos x#
Equating imaginary parts we have:
#sin 3x = 3cos^2 x sin x - sin^3 x#
#color(white)(sin 3x) = 3(1 - sin^2 x) sin x - sin^3 x#
#color(white)(sin 3x) = 3sin x - 4sin^3 x#
Explanation:
Perhaps this is not an attempt at an identity, but an equation to be solved.
In which case:
#4 sin x - 3 cos x = sin 3x = 3 sin x - 4 sin^3 x#
Hence:
#4 sin^3 x + sin x = 3 cos x#
Square both sides to get:
#16 sin^6 x + 8 sin^4 x + sin^2x = 9 cos^2 x = 9 - 9 sin^2 x#
Hence:
#0 = 16 sin^6 x + 8 sin^4 x + 10 sin^2 x - 9#
#color(white)(0) = (2 sin^2 x - 1)(8 sin^4 x + 8 sin^2 x + 9)#
This has only one real root and hence we find:
#sin^2 x = 1/2#
So:
#sin x = +-sqrt(2)/2#
If
#3 cos x = 4 sin^3 x + sin x = 3(sqrt(2)/2)#
hence
If
#3 cos x = 4 sin^3 x + sin x = 3(-sqrt(2)/2)#
hence
So the general solution is:
#x = pi/4 + npi" "# for any integer#n#