Let's factorise the denominator
#(x^2-x_30)=(x-6)(x+5)#
Let #f(x)=(x(x-2))/((x-6)(x+5)#
We can build the sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-5##color(white)(aaaaaa)##0##color(white)(aaaaaaa)##2##color(white)(aaaaaa)##6##color(white)(aaaa)##+oo#
#color(white)(aaaa)##x+5##color(white)(aaaa)##-##color(white)(aaa)##||##color(white)(aa)##+##color(white)(aa)##0##color(white)(aa)##+##color(white)(aa)##0##color(white)(aa)##+##color(white)(aa)##||##color(white)(aa)##+#
#color(white)(aaaa)##x##color(white)(aaaaaaa)##-##color(white)(aaa)##||##color(white)(aa)##-##color(white)(aa)##0##color(white)(aa)##+##color(white)(aa)##0##color(white)(aa)##+##color(white)(aa)##||##color(white)(aa)##+#
#color(white)(aaaa)##x-2##color(white)(aaaa)##-##color(white)(aaa)##||##color(white)(aa)##-##color(white)(aa)##0##color(white)(aa)##-##color(white)(aa)##0##color(white)(aa)##+##color(white)(aa)##||##color(white)(aa)##+#
#color(white)(aaaa)##x-6##color(white)(aaaa)##-##color(white)(aaa)##||##color(white)(aa)##-##color(white)(aa)##0##color(white)(aa)##-##color(white)(aa)##0##color(white)(aa)##-##color(white)(aa)##||##color(white)(aa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaa)##+##color(white)(aaa)##||##color(white)(aa)##-##color(white)(aa)##0##color(white)(aa)##+##color(white)(aa)##0##color(white)(aa)##-##color(white)(aa)##||##color(white)(aa)##+#
Therefore,
#f(x)>=0# when #x in (-5,0] uu[2,6)#
graph{(x(x-2))/((x-6)(x+5)) [-10, 10, -5, 4.995]}